
© University of Reading 2009 www.reading.ac.uk

Reading e-Science Centre

October 6, 2009, GO-ESSP,
Hamburg

Fast regridding of
complex grids for
visualization
Jon Blower, University of Reading, UK
j.d.blower@reading.ac.uk

Motivation
• Complex grids becoming more

common
– Following complex boundaries (e.g.

coasts)
– Avoiding polar singularities
– Maintaining constant spatial

resolution
– Satellite swaths

• We focus here on rectangular,
distorted grids

– Not cube-sphere, yin-yang etc (yet)

• CF defines how to encode these
– “two-dimensional coordinate axes”
– Or “curvilinear grids”

We need this for ncWMS
(and THREDDS-WMS)

• To create maps
• To extract information

at a given point
– Timeseries
– Profiles

• To produce transects

• And we need to do
this quickly
– We want a 256x256

map image in less
than a second

• And on the fly

http://www.reading.ac.uk/godiva2

In other words:

• We need to find the nearest i,j index in the grid

• For any combination of latitude/longitude

• CF defines this:

LatLon ll = grid.getLatLon(GridPoint gp);

• We need the inverse:

GridPoint gp = grid.getNearest(LatLon ll);

• But most curvilinear grids are not analytically
invertible!

Attempt 1: Look-Up Tables

• getNearest() can be very slow in the general case
– Exhaustive search

• So we calculated nearest grid point for a fixed set of
lon/lat pairs
– This is a look-up table (LUT)
– Calculated offline in a slow process
– Then loaded into memory

• (Aside: we used Rtrees to speed up the generation of
the LUT from hours to minutes.)

Results:
Not bad, could do better

• Very fast at generating images
• But cells appear blocky at high zooms
• (Also, configuration is awkward)

NEMO
tripolar

grid

An alternative approach

• ToolsUI and Panoply
use a different method

• They cycle through each
grid cell and calculate its
bounding polygon

• Then paint the polygon
onto a canvas

• (They calculate
polygons in different
ways… ToolsUI is
correct I think.)

Why can’t we simply use the
ToolsUI/Panoply method?

• We need the getNearest() function for things other
than generating map images
– Timeseries, profiles, transects…

• Generation of map images still not fast enough
– Takes several seconds, we need <1s
– Inefficient when under- or over-sampling

• Difficulties when creating images in other projections
– E.g. polar stereographic

• (Quite a few other reasons too… no time today!)

A hybrid solution

• We use the ToolsUI/Panoply method to generate
LUTs
– Takes seconds, not minutes/hours
– (some cunning use of Java image APIs here…)

• The LUT gets us close to the correct grid point
– Behaves like a fast spatial index

• Then we exhaustively search the nearby grid points for
a better match

It works! (most of the time)
http://www.reading.ac.uk/godiva2

• (problems with land masks are in the data, not the
software ;-)

Larger-scale regridding…

• Source data: ¼ degree global, NEMO tripolar grid
– (1 million grid points in the horizontal)

• Final image: 1024 x 512

• Time taken: ~7 seconds

Rarely, it screws up… �

• Problems can occur when it’s hard to calculate the
bounding polygon of a grid cell
– Some curvilinear grid formulations are “badly-behaved”
– Wrapping around the anti-meridian can cause problems

Suggestions for CF conventions

• Encode boundaries of grid cells as polygons
– These can be hard to calculate if only the centres are known
– Maybe following ADAGUC (see John van de Vegte’s talk)
– (note added after presentation: already exists in CF version

1.4, section 7.1. But nobody seems to use it!)

• Encode look-up table (rough mapping of lat/lon to i/j) in
headers
– Would help simple viz clients to display data

• Both could be optional

Conclusions

• We have reusable Java code for regridding curvilinear
grids into any other projection
– Great for GIS integration!
– Nearest-neighbour interpolation only
– Regridding is fast (seconds or less, not minutes or hours)

• Designed mainly for visualization but could be used for
data analysis too
– May require closer scrutiny

• Part of ncWMS codebase (ncwms.sf.net), but will be
factored out into separate library

THANKS!
Contact: j.d.blower@reading.ac.uk

Thanks especially to Rich Signell
for providing suitably-awkward
datasets for test purposes ;-)

